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1 Introduction

In this technical report we give a short summary of results contained in Chapters 2 -
5 of [Rieder, 1994] where we restrict our considerations to the estimation of a finite-
dimensional parameter in the one sample i.i.d. case (i.e., no testing, no functionals).
More precisely, we assume a parametric family

P = {Pθ | θ ∈ Θ} ⊂ M1(A) (1.1)

of probability measures on some sample space (Ω,A), whose parameter space Θ is an
open subset of some finite dimensional Rk. Sections 2 - 5 contain a short abridge of
some classical results of asymptotic statistics. For a more detailed introduction to
this topics we also refer to Chapter 2 of [Bickel et al., 1998] and Chapters 6 - 9 of
[van der Vaart, 1998], respectively. In the infinitesimal robust setup introduced in Sec-
tion 6, the family P will serve as ideal center model and at least under the null hypothesis
Pθ ∈ P the observations y1, . . . , yn at time n ∈ N are assumed to be i.i.d.. Finally, in
Section 7 we give the solutions (i.e., optimal influence curves) to the optimization prob-
lems motivated in Subsection 7.1. For the derivation of optimal influence curves confer
also [Hampel, 1968] and [Hampel et al., 1986].

2 L2 differentiability

To avoid domination assumptions in the definition of L2 differentiability, we employ the
following square root calculus that was introduced by Le Cam. The following definition
is taken from [Rieder, 1994]; for more details confer Subsection 2.3.1 of [Rieder, 1994].

Definition 2.1 For any measurable space (Ω,A) and k ∈ N we define the following real
Hilbert space that includes the ordinary Lk2(P )

Lk2(A) = {ξ
√
dP |σ ∈ Lk2(P ), P ∈Mb(A)} (2.1)

On this space, an equivalence relation is given by

ξ
√
dP ≡ η

√
dQ ⇐⇒

∫
|ξ√p − η√q |2dµ = 0 (2.2)

where | · | denotes the Euclidean norm on Rk and µ ∈ Mb(A) may be any measure,
depending on P and Q, so that dP = p dµ, dQ = q dµ. We define linear combinations
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with real coefficients and a scalar product by

αξ
√
dP + βη

√
dQ = (αξ

√
p + βη

√
q )
√
dµ (2.3)

〈ξ
√
dP | η

√
dQ 〉 =

∫
ξτη
√
pq dµ (2.4)

We fix some θ ∈ Θ and define L2 differentiability of the family P at θ using this square
root calculus; confer Definition 2.3.6 of [Rieder, 1994]. Here Eθ denotes expectation
taken under Pθ.

Definition 2.2 Model P is called L2 differentiable at θ if there exists some function
Λθ ∈ Lk2(Pθ) such that, as t→ 0,

‖
√
dPθ+t −

√
dPθ (1 + 1

2 t
τΛθ)‖Lk2 = o(|t|) (2.5)

and
Iθ = Eθ ΛθΛτθ � 0 (2.6)

The function Λθ is called the L2 derivative and the k × k matrix Iθ Fisher Information
of P at θ.

Remark 2.3 A concise definition of L2 differentiability for arrays of probability mea-
sures on general sample spaces may be found in Section 2.3 of [Rieder, 1994]. ////

We now consider a parameter sequence (θn) about θ of the form

θn = θ +
tn√
n

tn → t ∈ Rk (2.7)

Corresponding to this parametric alternatives (θn) two sequences of product measures
are defined on the n-fold product measurable space (Ωn,An)

Pnθ =
n⊗
i=1

Pθ Pnθn =
n⊗
i=1

Pθn (2.8)

Theorem 2.4 If P is L2 differentiable at θ, its L2 derivative Λθ is uniquely determined
in Lk2(Pθ). Moreover,

Eθ Λθ = 0 (2.9)

and the alternatives given by (2.7) and (2.8) have the log likelihood expansion

log
dPnθn
dPnθ

=
tτ√
n

n∑
i=1

Λθ(yi)−
1
2
tτIθt+ oPnθ (n0) (2.10)

where (
1√
n

n∑
i=1

Λθ(yi)

)(
Pnθ
)
−→w N (0, Iθ) (2.11)

Proof: This is a special case of Theorem 2.3.7 in [Rieder, 1994]. ////
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3 Local Asymptotic Normality

We first state a result of asymptotic statistics that is known as Le Cam’s third lemma.

Theorem 3.1 Let Pn, Qn ∈ M1(An) be two sequences of probabilities with log likeli-
hoods Ln ∈ log dQn

dPn
, and Sn a sequence of statistics on (Ωn,An) taking values in some

finite-dimensional (R̄p, B̄p) such that for a, c ∈ Rp, σ ∈ [0,∞) and C ∈ Rp×p,(
Sn
Ln

)
(Pn) −→w N

((
a

−σ2/2

)
,

(
C c
cτ σ2

))
(3.1)

then (
Sn
Ln

)
(Qn) −→w N

((
a+ c
σ2/2

)
,

(
C c
cτ σ2

))
(3.2)

(3.3)

Proof: [Rieder, 1994], Corollary 2.2.6. ////

The following definition corresponds to Definition 2.2.9 of [Rieder, 1994].

Definition 3.2 A sequence (Qn) of statistical models on sample spaces (Ωn,An),

Qn = {Qn,t | t ∈ Θn} ⊂ M1(An) (3.4)

with the same finite-dimensional parameter space Θn = Rk (or at least Θn ↑ Rk) is called
asymptotically normal, if there exists a sequence of random variables Zn : (Ωn,An) →
(Rk,Bk) that are asymptotically normal,

Zn(Qn,0) −→w N (0, C) (3.5)

with positive definite covariance C ∈ Rk×k, and such that for all t ∈ Rk the log likelihoods
Ln,t ∈ log dQn,t

dQn,0
have the approximation

Ln,t = tτZn −
1
2
tτCt+ oQn,0(n0) (3.6)

The sequence Z = (Zn) is called the asymptotically sufficient statistic and C the asymp-
totic covariance of the asymptotically normal models (Qn).

We now state Remark 2.2.10 of [Rieder, 1994] where we add a part (c) and (d).

Remark 3.3 (a) The covariance C is uniquely defined by (3.5) and (3.6). And (3.6)
implies that another sequence of statistics W = (Wn) is asymptotically sufficient iff
Wn = Zn + oQn,0(n0).

(b) Neglecting the approximation, the terminology of asymptotically sufficient may be
justified in regard to Neyman’s criterion; confer Proposition C.1.1 of [Rieder, 1994]. One
speaks of local asymptotic normality if, as in section 2, asymptotic normality depends
on suitable local reparametrizations.
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(c) The notion of local asymptotic normality – in short, LAN – was introduced by
[Le Cam, 1960].

(d) The sequence of statistical models Qn = {Qn,t |Qn,t = Pnθn} given by the alterna-
tives (2.7) and (2.8) is LAN with asymptotically sufficient statistic Zn = 1√

n

∑n
i=1 Λθ(yi)

and asymptotic covariance C = Iθ. ////

4 Convolution Representation and Asymptotic Minimax Bound

In this section we present the convolution and the asymptotic minimax theorems in the
parametric case; confer Theorems 3.2.3, 3.3.8 of [Rieder, 1994]. These two mathematical
results of asymptotic statistics are mainly due to Le Cam and Hájek.
Assume a sequence of statistical models (Qn) on sample spaces (Ωn,An),

Qn = {Qn,t | t ∈ Θn} ⊂ M1(An) (4.1)

with the same finite-dimensional parameter space Θn = Rk (or Θn ↑ Rk). The parameter
of interest is Dt for some p × k-matrix D of full rank p ≤ k. Moreover we consider
asymptotic estimators

S = (Sn) Sn : (Ωn,An)→ (Rp,Bp) (4.2)

The following definition corresponds to Definition 3.2.2 of [Rieder, 1994].

Definition 4.1 An asymptotic estimator S is called regular for the parameter transform
D, with limit law M ∈M1(Bp), if for all t ∈ Rk,

(Sn −Dt)(Qn,t) −→w M (4.3)

that is, Sn(Qn,t) −→w M ∗ IDt as n→∞, for every t ∈ Rk.

Remark 4.2 For a motivation of this regularity assumption we refer to Example 3.2.1
of [Rieder, 1994]. The Hodges estimator introduced there is asymptotically normal but
superefficient. However it is not regular in the sense of Definitions 4.1. Moreover, in
the light of the asymptotic minimax theorem (Theorem 4.5), the Hodges estimator has
maximal estimator risk; confer [Rieder, 1994], Example 3.3.10. ////

We now may state the convolution theorem.

Theorem 4.3 Assume models (Qn) that are asymptotically normal with asymptotic
covariance C � 0 and asymptotically sufficient statistic Z = (Zn). Let D ∈ Rp×k be a
matrix of rank p ≤ k. Let the asymptotic estimator S be regular for D with limit law
M . Then there exists a probability M0 ∈M1(Bp) such that

M = M0 ∗ N (0,Γ) Γ = DC−1Dτ (4.4)
and

(Sn −DC−1Zn)(Qn,0) −→w M0 (4.5)
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An asymptotic estimator S∗ is regular for D and achieves limit law M∗ = N (0,Γ) iff

S∗n = DC−1Zn + oQn,0(n0) (4.6)

Proof: Three variants of the proof are given in [Rieder, 1994], Theorem 3.2.3. ////

For the specification of the asymptotic minimax theorem we need the definition of the
set L of loss functions; confer pp. 78, 81 of [Rieder, 1994].

Definition 4.4 Let L be the set of all Borel measurable functions ` : R̄p → [0,∞] that
are

(a) symmetric subconvex on Rp; that is, for all z ∈ Rp and all c ∈ [0,∞],

`(z) = `(−z) {z ∈ Rp | `(z) ≤ c} is convex (4.7)

(b) upper semicontinuous at infinity; that is, for every sequence zn ∈ Rp with zn →
z ∈ R̄p \ Rp,

lim sup
n→∞

`(zn) ≤ `(z) (4.8)

This functions ` ∈ L will be called loss functions. If there is an increasing function
v : [0,∞] → [0,∞] and a symmetric positive definite matrix A ∈ Rp×p, then a loss
function of type,

`(z) =

{
v(zτAz) if |z| <∞
v(∞) if |z| =∞

(4.9)

will be called monotone quadratic.

For part (a) of the asymptotic minimax theorem we assume Θn open. Moreover asymp-
totic estimators with extended values can be allowed; i.e.,

S = (Sn) Sn : (Ωn,An)→ (R̄p, B̄p) (4.10)

Theorem 4.5 Assume models (Qn) that are asymptotically normal with asymptotic
covariance C � 0. Let D ∈ Rp×k be a matrix of rank p ≤ k. Put

ρ0 =
∫
` dN (0,Γ) Γ = DC−1Dτ (4.11)

for any Borel measurable function ` : Rp → [0,∞].
(a) Then, if ` ∈ L and ` is lower semicontinuous on R̄p,

lim
b→∞

lim
c→∞

lim inf
n→∞

inf
S

sup
|t|≤c

∫
b ∧ `(Sn −Dt) dQn,t ≥ ρ0 (4.12)



5 ASYMPTOTICALLY LINEAR ESTIMATORS

(b) Suppose ` : Rp → [0,∞] is continuous a.e. λp and the asymptotic estimator S∗ is
asymptotically normal for every c ∈ (0,∞), uniformly in |t| ≤ c,

(S∗n −Dt)(Qn,t) −→w N (0,Γ) (4.13)
Then for all c ∈ (0,∞),

lim
b→∞

lim
n→∞

sup
|t|≤c

∫
b ∧ `(S∗n −Dt) dQn,t = ρ0 (4.14)

and necessarily
S∗n = DC−1Zn + oQn,0(n0) (4.15)

Proof: [Rieder, 1994], Theorem 3.3.8 and Remark 3.3.9 (d). ////

5 Asymptotically Linear Estimators

In this section we define influence curves (ICs) respectively, partial ICs and asymp-
totically linear estimators (ALEs). Moreover we derive the Cramér-Rao bound in the
smooth parametric i.i.d. case and restricted to the class of ALEs.

5.1 Definitions

Often ICs are introduced as Gâteaux derivatives of statistical functionals; confer Sec-
tion 2.5 of [Huber, 1981] and Section 2.1 of [Hampel et al., 1986], respectively. But most
proofs of asymptotic normality in the i.i.d. case head for an estimator expansion, in which
ICs canonically occur as summands; confer M, L, R, S and MD (minimum distance) es-
timates. The following definition corresponds to Definition 4.2.10 of [Rieder, 1994].

Definition 5.1 Suppose P is L2 differentiable at θ, and assume some matrix D ∈ Rp×k

of full rank p ≤ k. Let α = 2,∞, respectively.
(a) Then the set Ψ2(θ) of all square integrable and the subset Ψ∞(θ) of all bounded

influence curves at Pθ , respectively, are

Ψα(θ) =
{
ψθ ∈ Lk2(Pθ) | Eθ ψθ = 0, Eθ ψθΛτθ = Ik

}
(5.1)

(b) The set ΨD
2 (θ) of all square integrable and the subset ΨD

∞(θ) of all bounded,
partial influence curves at Pθ, respectively, are

ΨD
α (θ) =

{
ψθ ∈ Lp2(Pθ) | Eθ ψθ = 0, Eθ ψθΛτθ = D

}
(5.2)

In this context we repeat Remark 4.2.11 of [Rieder, 1994] where we omit part (d) about
L1 differentiability, note part (e) without the proof and add time series models to part (f).

Remark 5.2 (a) The attribute square integrable will usually be omitted.
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(b) The classical scores and the classical partial scores,

ψh,θ = I−1
θ Λθ ∈ Ψ2(θ) (5.3)

ηh,θ = Dψh,θ = DI−1
θ Λθ ∈ ΨD

2 (θ) (5.4)

are always ICs, respectively, partial ICs, at Pθ.
(c) The definition of Ψ2(θ) and Ψ∞(θ) requires Iθ � 0, and Λθ nondegenerate in the

sense that, for all t ∈ Rk,

tτΛθ = 0 a.e. Pθ =⇒ t = 0 (5.5)

(d) [... ]
(e) [... ] ΨD

α (θ) =
{
Dψθ |ψθ ∈ Ψα(θ)

}
[... ]

(f) Of course, ΨD
α (θ) = Ψα(θ) for D = Ik. Partial ICs with general D occur when

there are nuisance components. In robust regression – respectively, time series models
–, moreover, conditionally centered (partial) ICs will occur.

(g) ΨD
α (θ) are closed convex subsets of Lpα(Pθ); α = 2,∞. ////

Next we give the definition of asymptotically linear estimators (ALEs); confer Defini-
tion 4.2.16 of [Rieder, 1994].

Definition 5.3 An asymptotic estimator

S = (Sn) Sn : (Ωn,An)→ (Rk,Bk) (5.6)

is called asymptotically linear at Pθ if there is an IC ψθ ∈ Ψ2(θ) such that

Rn =
√
n (Sn − θ) =

1√
n

n∑
i=1

ψθ(yi) + oPnθ (n0) (5.7)

We call R = (Rn) standardization, and ψθ the IC, of S at Pθ.

We now state Remark 4.2.17 of [Rieder, 1994] where we omit part (c) on L1 differentia-
bility and part (f) on the nonparametric convolution and asymptotic minimax theorems.

Remark 5.4 (a) The expansion (5.7) determines the IC ψθ uniquely, because 1√
n

∑n
i=1 η(yi)

with η ∈ Lk2(Pθ), Eθ η = 0, can tend to 0 in Pnθ probability only if Eθ |η|2 = 0; that is,
η = 0 a.e. Pθ.

(b) If S is asymptotically linear at Pθ with IC ψθ ∈ Ψ2(θ), then
√
n (Sn − θ)(Pnθ ) −→w N (0,Covθ(ψθ)) (5.8)

because of ψθ ∈ Lk2(Pθ), Eθ ψθ = 0, and the Lindeberg-Lévy theorem. The third con-
dition Eθ ψθΛτθ = Ik, as already noted in the remarks of [Rieder, 1980] (p. 108), is
equivalent to the locally uniform extension of this asymptotic normality; see Lemma 5.5
below.
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(c) [... ]
(d) Extending general M estimates, the class of ALEs has in the case k = 1 been in-

troduced by [Rieder, 1980]. [Bickel, 1981] defined the related notion CULAN, employing
however compact subsets of Θ instead of compacts in the local parameter space.

(e) The class of ALEs contains the common asymptotically normal M, L, R and MD
(minimum distance) estimates; confer chapters 1 and 6 of [Rieder, 1994]. In fact, most
proofs of asymptotic normality in the i.i.d. case end up with an extension (5.7); the
corresponding conditions need to be verified only under the ideal model.

(f) [... ]
(g) The previous robustness theories of [Huber, 1964], [Hampel, 1974], [Rieder, 1980]

and [Bickel, 1981] have been formulated but for ALEs or, even more specialized, for M
estimates. ////

The following lemma corresponds to Lemma 4.2.18 of [Rieder, 1994]. It is a consequence
of Theorem 2.4 together with Slutzky’s lemma, the Cramér-Wold devive and Le Cam’s
third lemma (Theorem 3.1).

Lemma 5.5 Let the ALE S have the asymptotic expansion (5.7) involving some func-
tion ψθ ∈ Lk2(Pθ), Eθ ψθ = 0. Then

Eθ ψθΛτθ = Ik (5.9)
holds iff √

n (Sn − θ)(Pθ+tn/√n ) −→w N (t,Covθ(ψθ)) (5.10)

for all convergent sequences tn → t in Rk.

5.2 Cramér-Rao Bound

In this subsection we show that in the parametric setup, and restricted to the class of
ALEs, the convolution theorem (Theorem 4.3) and the local asymptotic minimax theo-
rem (Theorem 4.5) coincide with the Cramér-Rao bound. Therefore we first specialize
these two theorems to the parametric context where one wants to estimate the parameter
t of the product models

Qn =
{
Pnθ+t/

√
n | t ∈ Rk

}
⊂M1(A) (5.11)

The following proposition corresponds to Proposition 4.2.19 of [Rieder, 1994].

Proposition 5.6 (a) Let an asymptotic estimator R be regular for t with limit law
M ∈M1(Bk). Then there is a probability M0 ∈M1(Bk) such that

M = M0 ∗ N (0, I−1
θ ) (5.12)

A regular estimator R∗ achieves the limit law M∗ = N (0, I−1
θ ) iff R∗ is the standard-

ization of an estimator S∗ that is asymptotically linear at Pθ with IC ψh,θ.
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(b) Let the loss function ` ∈ L be lower semicontinuous on R̄k. Then

lim
b→∞

lim
c→∞

lim inf
n→∞

inf
R

sup
|t|≤c

∫
b ∧ `(Rn − t) dPnθ+t/√n ≥ ρ0 (5.13)

where
ρ0 =

∫
` dN (0, I−1

θ ) (5.14)

If the function ` : Rk → [0,∞] is continuous a.e. λk, and the estimator S∗ is asymptoti-
cally linear at Pθ with IC ψh,θ, then

lim
b→∞

lim
c→∞

lim
n→∞

sup
|t|≤c

∫
b ∧ `(

√
n (S∗n − θ)− t) dPnθ+t/√n = ρ0 (5.15)

Proof: By the LAN property of Qn and Lemma 5.5, which ensures the uniformity on
t-compacts of weak convergence needed for (5.15), we may apply Theorems 4.3 and 4.5.

////

Now we adapt this results to ALEs which are regular in the sense of Definition 4.1 and
thus obtain the Cramér-Rao bound.

Proposition 5.7 Consider an estimator S = (Sn) that is asymptotically linear at Pθ
with IC ρθ ∈ Ψ2(θ).

(a) Then its standardization R is regular with normal limit law

N (0,Covθ(ρθ)) = N (0,Covθ(ρθ)− I−1
θ ) ∗ N (0, I−1

θ ) (5.16)

(b) Assume a loss function ` ∈ L that is continuous a.e. λk. Then

lim
b→∞

lim
c→∞

lim
n→∞

sup
|t|≤c

∫
b ∧ `(

√
n (Sn − θ)− t) dPθ+t/√n

=
∫
` dN (0,Covθ(ρθ)) ≥

∫
` dN (0, I−1

θ )
(5.17)

The lower bound is achieved by ρθ = ψh,θ. If ` is monotone quadratic and not constant
a.e. λk, the lower bound can be achieved only by ρθ = ψh,θ.

Proof: [Rieder, 1994], Proposition 4.2.20. ////

6 Infinitesimal Robust Setup

For a very detailed introduction and motivation of robust statistics we refer to Chap-
ter 1 of [Hampel et al., 1986]. A quick introduction to robustness is also given by
[Huber, 1997]. In this section we introduce the infinitesimal robust setup which may
be found in Subsection 4.2.1 of [Rieder, 1994]. For a more detailed introduction to this
setup we also refer to [Bickel, 1981]. Let

U(θ) =
{
U(θ, r)

∣∣ r ∈ [0,∞)
}

(6.1)
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be any system of neighborhoods U(θ, r) of radius r ∈ [0,∞) about Pθ such that

Pθ ∈ U(θ, r1) ⊂ U(θ, r2) ⊂M1(A) 0 ≤ r1 < r2 <∞ (6.2)

Within this work we restrict ourselves to (convex) contamination (∗ = c) and total
variation (∗ = v) neighborhood systems U∗(θ). [Rieder, 1994] also considers Hellinger
(∗ = h), Kolmogorov (∗ = κ), Cramér-von Mises (∗ = µ), Prokhorov (∗ = π) and Lévy
(∗ = λ) neighborhood systems. In the cases ∗ = c, v the system U∗(θ) consists of closed
balls about Pθ that are defined for an arbitrary sample space,

U∗(θ, r) = B∗(Pθ, r) r ∈ [0,∞) (6.3)
where

Bc(Pθ, r) =
{

(1− r)+Pθ + (1 ∧ r)Q
∣∣Q ∈M1(A)

}
(6.4)

Bv(Pθ, r) =
{
Q ∈M1(A)

∣∣ dv(Q,Pθ) ≤ r} (6.5)
with metric

dv(Q,Pθ) =
1
2

∫
|dQ− dPθ| = sup

A∈A
|Q(A)− Pθ(A)| (6.6)

and it holds Bc(Pθ, r) ⊂ Bv(Pθ, r).

Remark 6.1 The observations y1, . . . , yn, which are i.i.d. under the null hypothesis Pθ,
may now be allowed to follow any law Q ∈ U∗(θ, r), while still the parameter θ has to
be estimated. Since the equation

Q = Pθ + (Q− Pθ) (6.7)

involving the nuisance component Q − Pθ, has multiple solutions θ, the parameter θ is
obviously no longer identifiable. ////

Next we define p-dimensional tangents at Pθ and introduce simple perturbations of Pθ.

Definition 6.2 For any dimension p ∈ N and exponent α = 2,∞, respectively, we define

Zpα(θ) =
{
ζ ∈ Lpα(Pθ) | Eθ ζ = 0

}
(6.8)

The elements of Zp2 (θ) respectively, Zp∞(θ) are called square integrable respectively,
bounded p-dimensional tangents at Pθ. If a parametric model P is L2 differentiable
at θ, the L2 derivative Λθ is called parametric tangent.

Remark 6.3 p-dimensional tangents may also be defined for arbitrary exponents α ∈
[1,∞]; confer Definition 4.2.1 of [Rieder, 1994]. ////

Definition 6.4 A sequence Qn(ζ, . ) of simple perturbations of Pθ along ζ ∈ Zk2 (θ) is
given by

dQn(ζ, t) =
(

1 +
1√
n
tτζn

)
dPθ |t| ≤

√
n

supPθ |ζn|
(6.9)
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where the approximating bounded tangents ζn ∈ Zk∞(θ) are chosen such that

lim
n→∞

Eθ |ζn − ζ|2 = 0 sup
Pθ

|ζn| = o(
√
n ) (6.10)

Every t ∈ Rk is eventually admitted as a parameter value. In case of ζ ∈ Zk∞(θ) we may
choose ζn = ζ; confer Remark 4.2.3 of [Rieder, 1994].

The contamination and total variation neighborhood systems cover simple perturbations
along Zk∞(θ) (∗ = c) respectively, Zk2 (θ) (∗ = v), on the 1/

√
n scale. The following

definition corresponds to Definition 4.2.6 of [Rieder, 1994].

Definition 6.5 We call the neighborhood system U(θ) about Pθ full if for every ζ ∈
Zk∞(θ) and c ∈ (0,∞) there exist some r ∈ (0,∞) and n0 ∈ N such that

t ∈ Rk, |t| ≤ c, n ∈ N, n > n0 =⇒ Qn(ζ, t) ∈ U(θ, r/
√
n ) (6.11)

In this context we also note Remark 4.2.7 of [Rieder, 1994] as part (a) of the following
remark.

Remark 6.6 (a) With the 1/
√
n scaling, a neighborhood system is also called infinites-

imal. For sample size n→∞, neighborhoods and simple perturbations are scaled down
so, because, on the one hand, such deviations from the ideal model have nontrivial effects
on statistical procedures, while, on the other hand, they cannot be detected surely by
goodness-of-fit tests.

(b) The question, why infinitesimal contamination neighborhoods are shrinking at a
rate of

√
n , is also answered in [Ruckdeschel, 2005] by constructing a Neyman-Pearson

test for binomial probabilities to detect outliers. ////

Lemma 6.7 The systems Uc(θ) and Uv(θ) are full and they cover simple perturbations
along Zk∞(θ) and Zk2 (θ), respectively.

Proof: [Rieder, 1994], parts (c) and (v) of Lemma 4.2.8. ////

As the following lemma shows, the sequence of n-fold product measures Qnn(ζ, . ) is LAN
with asymptotically sufficient statistic Zn = 1√

n

∑n
i=1 ζ(yi) and asymptotic covariance

C = Covθ(ζ).

Lemma 6.8 For every convergent sequence tn → t in Rk, the simple perturbations
Qn(ζ, . ) along ζ ∈ Zk2 (θ), as defined by (6.9) and (6.9), satisfy

lim
n→∞

√
n
∥∥∥√dQn(ζ, tn) −

√
dPθ

(
1 + 1

2
√
n
tτζ
)∥∥∥
Lk2

= 0 (6.12)

and
log dQnn

dPnθ
= tτ 1√

n

∑n
i=1 ζ(yi)− 1

2 t
τ Covθ(ζ)t+ oPnθ (n0) (6.13)
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Proof: [Rieder, 1994], Lemma 4.2.4. ////

As a consequence of Lemma 6.8 together with Slutzky’s lemma, the Cramér-Wold device
and Le Cam’s third lemma (Theorem 3.1) we get,

Proposition 6.9 Consider an estimator S that is asymptotically linear at Pθ with IC
ψθ ∈ Ψ2(θ) and let Qn(ζ, . ) be a sequence of simple perturbations along ζ ∈ Zk2 (θ).
Then √

n (Sn − θ)(Qnn(ζ, tn)) −→w Nk(Eθ ψθζτ t, Covθ(ψθ)) (6.14)

for all convergent sequences tn → t in Rk.

Remark 6.10 Assume transforms τ : Rk → Rp (p ≤ k) which are differentiable at θ
with bounded derivative D = dτ(θ) of full rank p,

τ(θ + t) = τ(θ) +Dt+ o(|t|) rkD = p (6.15)

Then we get by the finite-dimensional delta method, setting ηθ = Dψθ,
√
n
(
τ ◦ Sn − τ(θ)

)
(Qnn(ζ, tn)) −→w Np(Eθ ηθζτ t, Covθ(ηθ)) (6.16)

for all convergent sequences tn → t in Rk. ////

7 Optimal Influence Curves

7.1 Introduction

We now fix θ ∈ Θ and define the following subclasses of one-dimensional bounded tan-
gents

Gc(θ) =
{
q ∈ Z∞(θ)

∣∣ infPθ q ≥ −1
}

(7.1)
and

Gv(θ) =
{
q ∈ Z∞(θ)

∣∣ Eθ |q| ≤ 2
}

(7.2)

By formally identifying tτζ = rq, the simple perturbations along ζ ∈ Zk∞(θ) are, for√
n ≥ −r infPθ q,

dQn(q, r) = dQn(ζ, t) =
(

1 +
r√
n
q

)
dPθ (7.3)

Lemma 7.1 Given q ∈ Z∞(θ) and r ∈ (0,∞). Then, in the cases ∗ = c, v, for every
n ∈ N such that

√
n ≥ −r infPθ q,

Qn(q, r) ∈ B∗(Pθ, r/
√
n ) ⇐⇒ q ∈ G∗(θ) (7.4)

Proof: On identifying tτζ = rq this may be read off the parts (c) and (v) of the proof
of Lemma 4.2.8 in [Rieder, 1994]. ////
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In view of Proposition 6.9 and Remark 6.10 we obtain the following result.

Proposition 7.2 Consider an estimator S that is asymptotically linear at Pθ with IC
ψθ ∈ Ψ2(θ) and let Qn(ζ, . ) be a sequence of simple perturbations along q ∈ Z∞(θ).
Moreover assume transforms τ : Rk → Rp (p ≤ k) which are differentiable at θ with
bounded derivative D = dτ(θ) of full rank p,

τ(θ + t) = τ(θ) +Dt+ o(|t|) rkD = p (7.5)

and let ηθ = Dψθ and

ρ0 =
∫
` dNk(rEθ ηθq, Covθ(ηθ)) (7.6)

(a) If ` : Rp → [0,∞] is lower semicontinuous then for all r ∈ (0,∞),

lim inf
n→∞

∫
`
(√
n (τ ◦ Sn − τ(θ))

)
dQnn(q, r) ≥ ρ0 (7.7)

(b) If ` : Rp → [0,∞] is continuous a.e. λp then for all r ∈ (0,∞),

lim
M→∞

lim
n→∞

∫
M ∧ `

(√
n (τ ◦ Sn − τ(θ))

)
dQnn(q, r) = ρ0 (7.8)

Proof: Consequence of Proposition 6.9 and Remark 6.10 together with
(a) the Lemma of Fatou in the version of Lemma A.2.1 of [Rieder, 1994].
(b) the continuous mapping theorem. ////

This leads us to the following limiting risk for ALEs, in the cases ∗ = c, v,

sup
q∈G∗(θ)

lim
M→∞

lim
n→∞

∫
M ∧ `

(√
n (τ ◦ Sn − τ(θ))

)
dQnn(q, r) = sup

q∈G∗(θ)
ρ0 (7.9)

Choosing quadratic loss `(z) = |z|2, we obtain the subsequent asymptotic mean square
error (MSE) problems,

maxMSEθ(ηθ, r) := Eθ|ηθ|2 + r2ω∗,θ(ηθ)2 = min ! ηθ ∈ ΨD
2 (θ) (7.10)

with
ω∗,θ(ηθ) = sup

{
|Eθ ηθq|

∣∣ q ∈ G∗(θ)} (7.11)

where the radius r ∈ (0,∞) of the simple perturbations (7.3) is fixed. The solutions to
this optimization problems are given in Subsection 7.4. The determination of the solu-
tions is based on Langrange multiplier theorems derived in Appendix B of [Rieder, 1994]
and canonically leads to the following Hampel type problem1, with bound b ∈ (0,∞)
fixed,

Eθ|ηθ|2 = min ! ηθ ∈ ΨD
2 (θ), ω∗,θ(ηθ) ≤ b (7.12)

Thus, the solutions to this Hampel type problems are given beforehand in Subsection 7.3.
The standardized (infinitesimal) bias terms ω∗,θ(ηθ) that occur in the optimization prob-
lems are more or less explicitly calculated in Subsection 7.2.

1in allusion to the problem solved in Lemma 5 of [Hampel, 1968]
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Remark 7.3 (a) Actually, we are interested in the following limiting risk

lim
M→∞

lim
n→∞

sup
Q∈U∗(θ,r/

√
n)

∫
M ∧ `

(√
n (τ ◦ Sn − τ(θ))

)
dQn (7.13)

Thus, it must be made sure, that at least for the optimal ICs, the interchanging of
limM limn and supq and the passage from the neighborhood submodel to full neighbor-
hoods does not increase the asymptotic risk (7.9). Under additional assumptions on the
optimal ICs, this goal can be achieved by suitable estimator contructions described in
Chapter 6 of [Rieder, 1994].

(b) Since the normal distribution is fully specified by its first two moments, one might,
analogously to pp. 197 of [Fraiman et al., 2001], think of the following general optimality
problem

sup
q∈G∗(θ)

g
(
rEθ ηθq,Covθ(ηθ)

)
= min ! ηθ ∈ ΨD

2 (θ) (7.14)

for suitable functions g. By choosing g(x1, x2) = |x1|2+tr(x2) and g(x1, x2) =∞ I{|x1|>b}(x1)+
tr(x2), respectively, this problem also covers the MSE and the Hampel type problem
stated above. ////

To lighten the notation we drop the fixed parameter θ and write ω∗ = ω∗,θ and η = ηθ
as well as G∗ = G∗(θ) and ΨD

2 = ΨD
2 (θ). Moreover let E = Eθ denote expectation,

Cov = Covθ covariance, and infP , supP the essential extrema, under P = Pθ.

7.2 Bias Terms

The standardized bias terms ω∗ for ∗ = c, v have the following general properties.

Lemma 7.4 Let ∗ = c, v and η ∈ Lp1(P ). Then

ω∗(η) = ω∗(η − E η) (7.15)
ω∗(η) = sup

{
ω∗(eτη)

∣∣ e ∈ Rp, |e| = 1
}

(7.16)
ωc(η) ≤ ωv(η) ≤ 2ωc(η) (7.17)

The terms ω∗ are positively homogeneous, subadditive, hence convex on Lp1(P ), and
weakly lower semicontinuous on Lp2(P ).

Proof: [Rieder, 1994], Lemma 5.3.2. ////

One gets the following explicit expressions for ω∗.

Proposition 7.5 Let η ∈ L1(P ) with E η = 0. Then

ωc(η) = supP |η| (7.18)
ωv(η) = sup

{
supP eτη − infP eτη

∣∣ e ∈ Rp, |e| = 1
}

(7.19)

Proof: [Rieder, 1994], Proposition 5.3.3 (a). ////
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Remark 7.6 For η ∈ L1(P ) such that η is bounded and E η = 0, it turns out that
the standardized bias terms evaluated over full contamination and total variation balls
do not exceed ω∗ by more than the increase of some P essential to pointwise extrema;
confer Lemma 5.3.4 of [Rieder, 1994]. ////

7.3 Minimum Trace Subject to Bias Bound

In this section we give the unique solutions to the Hampel type problems (7.12). For
various aspects of this problem confer pp. 196 of [Rieder, 1994]. We first give the unique
solution for ∗ = c.

Theorem 7.7 (a) In case ωmin
c < b ≤ ωc(ηh), there exist some a ∈ Rp and A ∈ Rp×k

such that the solution is of the form

η̃ = (AΛ− a)w w = min
{

1,
b

|AΛ− a|

}
(7.20)

Conversely, if some η̃ ∈ ΨD
2 is of form (7.20) for any b ∈ (0,∞), a ∈ Rp, and A ∈ Rp×k,

then η̃ is the solution, and the following representations hold,

a = Az 0 = E(Λ− z)w D = AE(Λ− z)(Λ− z)τw (7.21)

where ADτ = DAτ � 0.
(b) It holds that

ωmin
c = min

{
E |AΛ− a|

trADτ

∣∣∣∣ a ∈ Rp, A ∈ Rp×k \ {0}
}

(7.22)

There exist a ∈ Rp, A ∈ Rp×k and η̄ ∈ ΨD
2 achieving ωmin

c = b, respectively. And then
necessarily

η̄ = b
AΛ− a
|AΛ− a|

on {AΛ 6= a} (7.23)

Moreover, a = Az for some z ∈ Rk, and ADτ = DAτ � 0.
If η̄ in addition is constant on {AΛ = a}, then it is the solution.

Proof: [Rieder, 1994], Theorem 5.5.1. ////

Since the explicit bias terms for ∗ = v and p ≥ 2 are difficult to handle, we state the
unique solution only for p = 1.

Theorem 7.8 (a) In case ωmin
v < b ≤ ωv(ηh), there exist some c ∈ (−b, 0) and A ∈ R1×k

such that

η̃ = c ∨AΛ ∧ (c+ b) (7.24)
is the solution, and

ωv(η̃) = b (7.25)
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Conversely, if some η̃ ∈ ΨD
2 is of form (7.24) for any b ∈ (0,∞), c ∈ R, and A ∈ R1×k,

then η̃ is the solution, and the following representations hold,

E(c−AΛ)+ = E(AΛ− (c+ b))+ D = E
[
c ∨AΛ ∧ (c+ b)

]
Λτ (7.26)

(b) It holds that

ωmin
v = min

{
E(AΛ)+
ADτ

∣∣∣∣A ∈ R1×k \ {0}
}

(7.27)

There exist A ∈ R1×k and η̄ ∈ ΨD
2 achieving ωmin

v = b, respectively. And then necessarily

η̄ I(AΛ 6= 0) = c I(AΛ < 0) + (c+ b) I(AΛ > 0) (7.28)

for some c ∈ (−b, 0). In the case k = 1, the solution is

η̄ = b sign(D)
(
P (Λ < 0)
P (Λ 6= 0)

I(Λ > 0)− P (Λ > 0)
P (Λ 6= 0)

I(Λ < 0)
)

(7.29)

Proof: [Rieder, 1994], Theorem 5.5.5. ////

7.4 Mean Square Error

In this section we give the solutions to the MSE problemss (7.10).

Theorem 7.9 (a) The solutions to problem (7.10) for ∗ = c and (∗ = v, p = 1),
respectively, are unique.

(b) The solution to problem (7.10) and ∗ = c coincides with the solution of prob-
lem (7.12) and ∗ = c, with b ∈ (0,∞) and r ∈ (0,∞) related by

r2b = E
(
|AΛ− a| − b

)
+

(7.30)

(c) The solution to problem (7.10) and (∗ = v, p = 1) coincides with the solution of
problem (7.12) and (∗ = v, p = 1), with b ∈ (0,∞) and r ∈ (0,∞) related by

r2b = E
(
c−AΛ)+ (7.31)

Proof: [Rieder, 1994], Theorem 5.5.7. ////

The following result may, in terms of statistical risk, be interpreted as an extension of
the classical Cramér-Rao bound under quadratic loss, in which trA = tr I−1.

Lemma 7.10 It holds
maxMSE (η̃, r) = trADτ (7.32)
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Proof:
∗ = c: We define Y := A(Λ− z). Then

maxMSE (η̃, r) = E |η̃|2 + r2ω2
c (η̃)

= E |Y |2w2 + r2b2

= EY τ η̃ − EY τY w(1− w) + r2b2

= trADτ − EY τY w(1− w) + r2b2 by (7.21)
Moreover

EY τY w(1− w) = E |Y |2 b

|Y |

(
1− b

|Y |

)
+

= bE
(
|Y | − b

)
+

= r2b2 by (7.30)

∗ = v, p = 1: We define Y := AΛ ∈ R and w := 1 ∧max
{
c
Y ,

c+b
Y

}
. Then η̃ = Y w

and we get analogously to the case ∗ = c

maxMSE (η̃, r) = ADτ − EY 2w(1− w) + r2b2 by (7.26) (7.33)
Again

EY 2w(1− w) = EY 2 max
{
c

Y
,
c+ b

Y

}(
1−max

{
c

Y
,
c+ b

Y

})
+

(7.34)

= (c+ b) E
(
Y − (c+ b)

)
+
− cE

(
c− Y

)
+

= r2b2 by (7.26) and (7.31)

////

Remark 7.11 This correspondence for the asymptotic minimax MSE holds more gen-
erally and can be verified for the cases ∗ = c, v, t = 0, ε, α, s = 0, e, 2 considered in
[Rieder, 1994]. Exceptions are the cases ∗ = h, t = 0, s = 0, e and ∗ = h, t = α = 2, s = e,
where the optimal robust ICs are identical to ηh and maxMSE(ηh, r) = trDI−1Dτ+r2b2.

////
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